Bayesian designs of phase II oncology trials to select maximum effective dose assuming monotonic dose-response relationship
نویسندگان
چکیده
BACKGROUND For many molecularly targeted agents, the probability of response may be assumed to either increase or increase and then plateau in the tested dose range. Therefore, identifying the maximum effective dose, defined as the lowest dose that achieves a pre-specified target response and beyond which improvement in the response is unlikely, becomes increasingly important. Recently, a class of Bayesian designs for single-arm phase II clinical trials based on hypothesis tests and nonlocal alternative prior densities has been proposed and shown to outperform common Bayesian designs based on posterior credible intervals and common frequentist designs. We extend this and related approaches to the design of phase II oncology trials, with the goal of identifying the maximum effective dose among a small number of pre-specified doses. METHODS We propose two new Bayesian designs with continuous monitoring of response rates across doses to identify the maximum effective dose, assuming monotonicity of the response rate across doses. The first design is based on Bayesian hypothesis tests. To determine whether each dose level achieves a pre-specified target response rate and whether the response rates between doses are equal, multiple statistical hypotheses are defined using nonlocal alternative prior densities. The second design is based on Bayesian model averaging and also uses nonlocal alternative priors. We conduct simulation studies to evaluate the operating characteristics of the proposed designs, and compare them with three alternative designs. RESULTS In terms of the likelihood of drawing a correct conclusion using similar between-design average sample sizes, the performance of our proposed design based on Bayesian hypothesis tests and nonlocal alternative priors is more robust than that of the other designs. Specifically, the proposed Bayesian hypothesis test-based design has the largest probability of being the best design among all designs under comparison and the smallest probability of being an inadequate design, under sensible definitions of the best design and an inadequate design, respectively. CONCLUSIONS The use of Bayesian hypothesis tests and nonlocal alternative priors under ordering constraints between dose groups results in a robust performance of the design, which is thus superior to other common designs.
منابع مشابه
Bayesian Adaptive Designs for Early Phase Clinical Trials
BAYESIAN ADAPTIVE DESIGNS FOR EARLY PHASE CLINICAL TRIALS Publication No. Chunyan Cai, B.S. Supervisory Professor: Ying Yuan, Ph.D. My dissertation focuses mainly on Bayesian adaptive designs for phase I and phase II clinical trials. It includes three specific topics: (1) proposing a novel two-dimensional dose-finding algorithm for biological agents, (2) developing Bayesian adaptive screening d...
متن کاملA product of independent beta probabilities dose escalation design for dual-agent phase I trials
Dual-agent trials are now increasingly common in oncology research, and many proposed dose-escalation designs are available in the statistical literature. Despite this, the translation from statistical design to practical application is slow, as has been highlighted in single-agent phase I trials, where a 3 + 3 rule-based design is often still used. To expedite this process, new dose-escalation...
متن کاملAdaptive designs for phase II cross-over dose-finding trials using Bayesian model averaging
Finding the right dose of a novel treatment is one of the most important tasks in early drug development. However, there is often uncertainty about the form of the relationship between dose and patient response at the time that the dose-finding trials are designed. In this presentation we develop Bayesian adaptive designs for Phase II cross-over trials conducted to estimate the minimum effectiv...
متن کاملBayesian dose selection design for a binary outcome using restricted response adaptive randomization
BACKGROUND In phase II trials, the most efficacious dose is usually not known. Moreover, given limited resources, it is difficult to robustly identify a dose while also testing for a signal of efficacy that would support a phase III trial. Recent designs have sought to be more efficient by exploring multiple doses through the use of adaptive strategies. However, the added flexibility may potent...
متن کاملBayesian dose-finding in phase I/II clinical trials using toxicity and efficacy odds ratios.
A Bayesian adaptive design is proposed for dose-finding in phase I/II clinical trials to incorporate the bivariate outcomes, toxicity and efficacy, of a new treatment. Without specifying any parametric functional form for the drug dose-response curve, we jointly model the bivariate binary data to account for the correlation between toxicity and efficacy. After observing all the responses of eac...
متن کامل